<var id="pxh0h"></var>
  • <input id="pxh0h"></input>
  • <var id="pxh0h"></var>
    <nav id="pxh0h"><output id="pxh0h"></output></nav><font id="pxh0h"></font>
  • <sub id="pxh0h"><tt id="pxh0h"></tt></sub>
    <nav id="pxh0h"><var id="pxh0h"></var></nav>
  • <var id="pxh0h"><output id="pxh0h"></output></var>
  • 展開

    力量訓練器抑振參數集知識表達

    發布時間:2022-06-24   |  所屬分類:文學:論文發表  |  瀏覽:  |  加入收藏

      訓練器振幅過大會在訓練過程中對人體造成直接傷害,也會降低器械自身的使用壽命,為將振動幅度控制在合理范圍內,提出了一種核心力量訓練器抑振參數集的知識表達及映射方法。利用達朗貝爾原理計算訓練器連接軸間隙的偏心量求解出質心線速度矩陣,結合各連桿受力情況構建運動學模型。采用正弦-梯形函數根據動力模型規劃振動抑制曲線,并將曲線中角速度參數化,利用離散角位置差值計算出映射參數。實驗結果表明,所提方法能夠在極短的時間內降低核心力量訓練器振動,滿足核心訓練器抑振的基本需求,表達及映射結果真實有效具有一定的實際應用價值。

    力量訓練器抑振參數集知識表達

      關鍵詞:軸間隙偏心量;達朗貝爾原理;線速度矩陣;運動學模型;正弦-梯形函數;離散角位置差值

      1引言

      核心力量訓練早期應用于康復領域,近年來在運動訓練領域得到廣泛應用。并且核心的位置被視為人體的中心位置,如腰椎周圍,由許多貫穿全身的不同肌肉構成,這些肌肉能夠確保人體末端的穩定活動。核心力量的穩定性和靈活性在運動活動中起著重要作用,核心肌使人能夠直立行走,強化個體對于肢體控制精準度。在日常鍛煉中,核心肌群能夠在穩定發力的同時進行力量傳導,實現整體肌肉的協同運行,增強人體穩定性,即提升運動過程中人體拮抗肌和主動肌支撐關節的穩定程度。其中腰椎穩定性直接由肌肉間的主動緊張決定,若脊柱沒有肌肉附著,則其所能夠承受負荷的壓縮力也會大幅度降低,表明核心穩定性為保持人體核心部位處于穩定狀態的重要因素。核心肌肉主要由橫突間肌、多裂肌骶棘肌等組成,這些肌肉群會通過肌體收縮或者放松,完成對重物的推舉、保持人體靜態直立以及調整脊背彎曲角度等,為此,借助工具能更有效地提升體內深層肌肉群能夠,強化訓練反射活動。核心訓練與傳統肌力訓練有所不同,更優于單純的力量訓練,其融合了力量、平衡、柔韌以及靈敏度等本體感覺的訓練。提升人體核心區域的穩定性,使軀干能擁有強大的抗擊打能力,并最大程度降低四肢應力,提高末端肌肉的受力,從而增強各肌肉群的協作能力,加快傳遞速度,使整體的能量輸出效率更高。同時因其具備提高穩定性和增強力量等功能,會有效地降低運動者腰背和末端損傷概率,在增加運動員服役時間,提高運動成績方面起著關鍵作用,因此近年來關于核心訓練器的研究也逐漸成為熱門問題;诖,所提方法為降低訓練器的振動幅度,提出一種核心力量訓練器抑振參數集的知識表達及映射方法。所提方法的創新之處在于首先對核心訓練器進行動力學建模,隨后規劃振動抑制軌跡,給出相關參數并對其進行計算。即分析訓練器的連桿轉動慣量、連接軸質心及連接軸半徑等相關數據,并進行動力學建模以了解其可能產生振動部位,隨后為避免加速度突變,采用正弦-梯形函數對關節角速度進行規劃并將連接處角速度參數化表達,最后采用遺傳算法完成映射參數計算。通過實驗表明所提方法具有一定的可行性,給出的參數能夠實現抑振。

      2核心力量訓練器動力學建模由

      于訓練器各連桿間可能存在較多間隙[1],因此利用間隙偏心量結合達朗貝爾原理[2]求解核心力量訓練器的運動學問題,若連桿n與連桿n-1的軸心沒有重合,則在連接軸的X、Y方向會產生偏心量e、e。某一訓練器的等效圖,如圖1所示。Fig.1EquivalentDiagramofConnectingRodofTrainer如圖1所示0102、0304、0506表示關節1、2、3的間隙,3個間隙在X、Y方向的長度分量依次為:e1x、e1y、e2x、e2y、e3x、e3y,3個連桿的長度分別為L1、L2和L3,質心分別是S1、S2和S3,3個質心在連桿上的位置為:LS1、LS2和LS3,在訓練過程中3個連桿的受到的驅動力矩[3]為T1、T2和T3,角位移為θ1、θ2和θ3。由此構建訓練器的運動學方程,質心S1的坐標,如式(1)所示。一次求導式(1)~式(3),求解出質心S1的線速度,如式(4)所示。為更好地獲得訓練器的受力情況,采用達朗貝爾原理對其進行動力學分析,分析結果,如圖2~圖4所示。從圖中可以看出,連桿-底座、連桿-連桿間均有碰撞產生,即均可能導致振動。圖2中F01為連桿1受基座碰撞產生的作用力,F21為連桿2與連桿1之間碰撞產生的作用力。圖3中F12表示連桿1和連桿2間的碰撞力,F32表示連桿3和連桿2間的碰撞力。圖4中F23表示連桿2與連桿3間的碰撞力,F21和F12、F32和F23為兩組相互作用力。其中α1、α2和α3為各連桿兩極處的偏心角[4],其表達式,如式(7)所示。式中:R1—基座連接軸的軸套半徑;R3—連桿1連接軸的軸套半徑;R5—連桿2連接軸的軸套半徑;R2—連桿1連接軸的軸徑半徑;R4—連桿2連接軸的軸徑半徑;R6—連桿3連接軸的軸徑半徑;J1—連桿1轉動慣量;J2—連桿2轉動慣量;J3—連桿3轉動慣量。對以上各式進行整理,可得訓練器的動力模型,如式(11)所示。x=M-1F(11)式中:x—廣義加速度矩陣[5];M—廣義質量矩陣;F—廣義力矩陣。

      3抑振參數集知識表達及映射

      3.1振動抑制軌跡規劃

      根據訓練器動力模型明確可能產生振動區域,進一步得到相應抑振參數,同時為避免加速度突變,采用正弦-梯形函數[6]對關節角速度進行規劃,假設振動軌跡的值域和定義域分別為(0,1)、(0,T),函數分為上升段、勻速段以及下降段[7]三部分,如式(12)所示。其曲線情況,如圖5所示。針對指定函數可通過對上式疊加獲得,如式(14)所示。式中:k—基函數階數;bki—第k階第i個子函數的疊加系數;ck—第k階平穩階段絕對時間。c

      3.2連接處角速度參數化

      由于訓練器中分別包括剛性桿件和柔性桿件,因此采用2階和3階級數表示連桿1-連桿2(關節1)、連桿2-連桿3(關節2)的連接處角速度,如式(15)所示。

      3.3參數表達及映射

      所研究的訓練器的基本參數,如表1所示。由于人體運動過程中,訓練器連接軸的轉速不會太快,所產生的振動為彈性小振動,因此訓練器的一階振動即為主要的振動模態,故所提方法對其一階模態進行分析,采用數值求解法[8]求得一階固有頻率為26rad/min,并假設該模態下的阻尼比為0.02。為了使抑制效果更為明顯,對該訓練器施加較大拉力,運動參數為:運動開始前θ0=0rad,結束時θf=π2rad,運動的總耗時為tf=5min。為使運動更加平穩,對訓練器的最大運動速度及加速度進行約束。設t0、tf—訓練器的運動起始和終止時間,θ0、v0—運動開始前位置及速度,a0—初始時刻加速度,θf、vf—訓練結束后連桿所處位置及速度,af—結束時加速度,由于運動初始和結束時期均為靜止狀態,其速度及加速度為零,可得訓練器的五次多項式的軌跡曲線,如式(17)所示。通過式(17)對運動狀態下的訓練器進行描述即可以通過離散角位置差值[9]計算出具體參數,操作流程如下:在訓練器的時間軸上將運行軌跡等分為n個時間間隔,時間節點分別為t0,t1,...,tn,ti時間節點內訓練器連桿的角位移為θi,只需確定運動起始和終止間的n-1個差值點即可以擬合出唯一一條訓練器連桿的運動軌跡曲線。為提高搜索速率首先去除由于速度及加速度變化較大不符合正常人體訓練形成的運動軌跡曲線,首先確定一條基準曲線,離散化處理后得到一個基礎位移值,隨后將該基礎值浮動變化從而獲得各連桿運動軌跡控制點的位移值,如式(18)所示。θi=θBi+ΔθFi(18)式中:θBi—基礎位移值;ΔθFi—浮動值;θi—計算所得的運動軌跡控制點位移值。從式(18)中可以明顯看出選取不同的浮動值,經過差值計算后即可獲得不同的軌跡曲線,大幅減少了待處理變量可行域的同時又保證了遍歷結果的準確性。同時為縮短振動時間,要求在訓練器不同組成成分發生碰撞后振動立即停止,因此設置參數時也要求運動接收后產生的余振也較小,因此在給出最優抑振參數時,能夠賦予殘余振動更高的權重。設振動能量和余振能量的權重系數δ1、δ2為0.3和0.7。運動停止后觀察余振情況后,采用遺傳算法求得抑振參數映射θ的值為式(19):θ∈-1.5θ||1-θf,0.5θ||3-θ2(i)=1,2,...,n-1(19)遺傳算法[10]的進化過程,如圖6所示。隨著進化代數的不斷增加,適應度也逐漸降低,歷經約30次進化訓練后,映射結果獲得最優θ值。

      4仿真實驗

      利用仿真軟件進行訓練器連桿的動力建模,計算出訓練器連桿的振動響應。對訓練器施加拉力,卸載負荷后,計算振動響應,分別施加50N、100N、150N的拉力,訓練器連桿的振幅變化與實際值的對比結果,如圖7~圖9所示。如圖7~圖9所示,相較于實際值,所提方法下的訓練器的連桿振動衰減較快,說明所提方法得到的知識表達和映射結果具有較好的抑振效果。且在三種不同作用力下,振幅都呈現減弱到較小程度后衰減變慢,在(0.4~0.5)s后振動基本消失,抑振效率也較快,這是因為所提方法詳細分析了訓練器連桿與欄桿或連桿與基座之間的相對運動,從而能更加有效計算出精準的抑振參數,從而實現振動能量耗散降低。

      5結論

      在訓練過程中訓練器振幅過大會對人體造成直接傷害,也會降低其自身的使用壽命,為將振動幅度控制在合理范圍內,提出了一種核心力量訓練器抑振參數集的知識表達及映射方法。所提方法的結論如下:(1)所提方法利用達朗貝爾原理計算訓練器連接軸間隙的偏心量求解出質心線速度矩陣,結合各連桿受力情況構建運動學模型。采用正弦-梯形函數根據動力模型規劃振動抑制曲線,并將曲線中角速度參數化,利用離散角位置差值計算出映射參數。(2)實驗結果表明,所提方法在三種不同作用力下,振幅都呈現減弱到較小程度后衰減變慢,在(0.4~0.5)s后振動基本消失,抑振效率也較快,即所提方法能夠在極短的時間內降低核心力量訓練器振動,滿足核心訓練器抑振的基本需求,說明所提方法所得參數具有較好的抑振效果。

      《力量訓練器抑振參數集知識表達來源于》來源于《機械設計與制造》2022,(05)作者:羅麗娜 譚保華

    轉載請注明來自:http://www.lazy8.net/wenxuelw/24363.html


      上一篇:赫哲族音樂文化傳承與展望
      下一篇:沒有了

      又色又爽又黄的三级视频
      <var id="pxh0h"></var>
    • <input id="pxh0h"></input>
    • <var id="pxh0h"></var>
      <nav id="pxh0h"><output id="pxh0h"></output></nav><font id="pxh0h"></font>
    • <sub id="pxh0h"><tt id="pxh0h"></tt></sub>
      <nav id="pxh0h"><var id="pxh0h"></var></nav>
    • <var id="pxh0h"><output id="pxh0h"></output></var>